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A simple method of determining the conditions for ignition, based on l inear izat ion of the resulting nonlinear 
equations, is presented. Good agreement  is obtained between the exact  conditions and the approximate condi-  
tions given by the l inear iza t iou method.  A physical interpretat ion of the new method is offered. 

1. Equations of the S teady-Sta te  Theory of Thermal  Explosion 

In the general  case, problems of the s teady-s ta te  theory of thermal  explosion [1-2] lead to the solution of the equa-  
t ion:  
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where | is the dimensionless temperature ,  3 is a dimensionless kinet ic  parameter ,  x, y, and z are dimensionless co-  
ordinates referred to the character is t ic  l inear dimension L of the region D occupied by the reactant ,  q is the thermal  
effect of the react ion per unit volume,  E is the act ivat ion energy, k is the thermal  conduct ivi ty,  T (x, y, z) is the 
absolute temperature  at an arbitrary point in the region, T O is the absolute temperature  of the medium surrounding the 
react ing system, R is the universal gas constant, and A is the coefficient  of the exponent ial  function in the expression 

for the react ion ra te :  
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Here t is the t ime  of to ta l  combustion for a constant rate and the in i t ia l  tempera ture .  
P 

At the boundary of the region:  

where y is the Biot number,  a is the coefficient  of heat transfer from the react ing surface to the surrounding medium,  

and n is the normal to the boundary of the region F . 

In formulating Eq. (1.1)  it was assumed that  the re la t ive  heat ing of the react ing system is small  ( T - - T 0 ) / T  0 << 1, 
and the expansion of exp (--E/RT) was used. For intense heat  transfer and large values of the Blot number y --* *% con-  

dit ion (1.2) becomes 

O Ir = 0. (1. a) 

At smal l  values of the Blot number 7 ~ 0 the temperature  at a l l  points of the react ing system is almost the same,  

and the given problem is equivalent  to the problem of autoignit ion formulated by N. N. Semenov [3]. 

At cer ta in  values of the parameter  5 = 6 ,  the boundary problem (1.1) ,  (1.2) ceases to have a real  solution. These 
values of 6, are c r i t i ca l ,  i . e . ,  values of 6 for whieh thermal  autoignit ion is achieved,  and the problem of the s teady-  

state theory of the rmal  explosion consists in determining these values of 6 = 6 , .  From the ma thema t i ca l  point of view, 
5 ,  are branch points of the boundary problem (1.1) ,  (1 .2) ,  since,  according to [2, 4] and the results of the next sec-  

tion, the two solutions of the problem merge.  

2. One-Dimensional  Problems of the S teady-Sta te  Theory of Thermal  Explosion 

For the subsequent discussion i t  is necessary to solve one-dimensional  problems of the s teady-s ta te  theory of thermal  

With the aid of the Frank-Kamenetski i  integral  for the boundary conditions 

dx ~=o ~ q - 7 0  x=l=O 

explosion.  

2 s ,  2 2 S 
~ ,  ~-- ~ e x p ( - - - ~ -  , t h 3 , )  

it is easy to find the c r i t i ca l  value 

(2.1)  

(2 .2)  

59 



for a plate, 

(s = V"h  8 exp (%) 

where s, is the root of the equation 

3" = ( r  + l )  x ,  th  .% _L .,.,- s c h - x , .  

(2.2 

cont. ) 

(2.3) 

The critical temperature prof le is determined from the formula 

From formula (2.4) 
pre-explosion heating 

O ,  ( x )  = 6)0 ,  - -  2 In ch s , . r  ( 2 . 4 )  

it is easy to find for x = I thewall  temperature of a plane reaction vessel, and the critical 

Ou, = In (2.% 2 / 5 . ) .  (2.5) 

In Fig. 1 the solid line represents the relation between o, and In 7 , calculated from formula (2.2), while in Fig. 2 
it represents the relation between | and @, (1) and In 7. It can be seen from Fig. 2 that @~,, -, 1. C,(1) -~ 1 when 

7 --+ 0. 
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Fig, 1. 

The problem of a thermal explosion with boundary conditions of the third 
kind has been solved in [5] for the case of an infinite cylinder. The quantity 8, 

can be expressed in the form: 

8m, [ 4 , , , , ]  
(5, --  (l -t- ra ,?  exp ~" (l + m,) ' m ,  = 2~ "-~ (1/1 + ~/~ T 2 - -  1 ) .  

24 (2.6) 
The maximum temperature ~0, = 111 (8m./8.), and the critical tempera- 

ture profile 

zs O ,  (x) = 0o ,  - -  2 In (1 n t- re ,x2) .  (2.7) 

In Fig. :~ the solid line 1 represents the relation between o, and in 7. and 
Fig. 4 gives the graph of ~0. and ~.(1) as a function of in ~'. Hence it can 

be seen that when 7 --* 0 both quantities tend to 1. 
a.$ 

For a spherical vessel ,.,,e have the equation 

d~O 2 dO 
-??;:~ H- d~ + ~e~ = 0 .  (9. ~) 

O x 

By means of the substitution 

= x V-i/2 exp 0o, qo = 0 - -  Oo 

(2.9) 

we have 

d2(p 2 d(p 
dd- J r -  ~ d~ H - 2 e ~ = O .  

According to [6], the solution of Eq. (2.8), satisfying the conditions of 
symmetry, can be written in the form: 

x 

O=Oo--2Ix-'(I~'exp[q)(~)]d~)dx. (2.10, 

0 o 

Subjecting Eq. {2.10) to the boundary condition (2.1) for x = 1, we 

have an equation for determining the value of 5 at which there exists 

a solution of the boundary problem (1.1), (1.2) in the spherical case: 

8 $ 

0 0 

Differentiating Eq. (2 .11)  with respect to Go, we tlave all 

the maximum value of 6 = 6, is reached: 

e4 ~ ~ g y  

a g 0 2 

Fig. o. 

X 

t (I ~'exp[q)(~)ld~)dx] 0 -~r = �9 

1) 

(e .11)  

equation for determining the value of s = s.,  at which 

t-2-(1", - -  ~') f x2 exl) [q~ (x)l dx + T - -  s,= exI ) [q~ (s,)]  = O. 
0 

(2.12)  
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Here and above ~o( g ) is the solution of Eq. (2 .9)  for the conditions 

q~' (o)  = cp (o)  = o .  <ais) 

According to [4], with the change of variables 

= 2 q- ~&p/d~, p = ~2 e x p  [q~ (~)1 .  ( 2 .14 )  

Eq. (2.9) can be reduced to the first-order equation 

d~ 2 (I -- #) -- 
a-7 = W, (2, i~) 

Emden [7]. 
The graph of <b = ~ (p) is plotted qual i ta t ively  in [4]. An equation of the type (2.15)  was integrated numerical ly  by 

The quantities z l a n d  y given in [7] are related to the quantities ~b and p in the following manner= 

= - -  y,  zz = In 2p.  (2.16) 

Substituting (2.14)  in (2.11),  after certain transformations we have; 

and instead of (2 .12)  we have the equation 

6 = 2 p  e x p  [(q~ - -  2) / T] ,  

,~ (p) = 2 (p-- I) / (7-- I). 

(2.i7) 

(2.18) 
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Fig. 3. 

Having determined the values of $. and p .  from Eq. (2.18)  as the first 
6a7 point  of intersection of the curve $(p) and the straight l ine ~ = 2(p - 1)/(7 - 1), 

we find 6 ,  from formula (2. I7) for any corresponding value of y .  It is easy 
to show that when ~ (p) is varied the quantity s always increases .  Since,  
according to [4], for p = I equation (2 .15)  has a singular point of the focus 
type,  there exist an infini te number of points of intersection of the curve 
~(p) and the straight l ine ~ = 2(p - 1 ) / ( ] / -  1) and, consequently, there exist 

an infini te  number of values of s = s i , ,  at which an extremum of 8 = 6i. i s  
a g reached,  i . e . ,  the curve 6 = 6 (s) has an infinite number of max ima  and min -  

ima which decrease in absolute value with increase in s and, asymptOtical-  

ly approach the value 6 = 2 exp ( - 2 / 7 )  as s -+  ~.  The first ma x imum 6 = 6z,, 
a t tained at the minimum,  compared with the rest, value of s = s t l ,  is the 

_ _ / %  grea tes t : thenfor  8 > 81. there i sno rea l  solut ionof  the boundary p rob lem(2 .8) ,  
(2 .1) ,  and this value 8 = 6 i ,  should be considered c r i t i ca l .  

For y = 0.2 and 0 .4  we found 61, = 0.212 and 0.4072, respect ive!y,  
with the aid of [7]. By expanding the solution of the boundary problem (2 .8) ,  
(2.1)  in powers of g we found that when 7 = 0 the temperature  at the wall  

of the vessel O,(1) and | tend to 1. 

Note that  the first two boundary problems for 6 < 6 .  have two solutions, one of which has supercri t ical  and the other 

subcri t ica!  pre-explosion heating; for 6 = 6 ,  these two solutions merge.  For  82. < 6 ~ 61, ,  where 61. and 62, are two 
consecutive max ima  of the curve 6 (s), boundary problem (2 .8) ,  (2 .1)  also has two solutions, which merge when 6 = 61r 
Different numbers of solutions are possible for other values of 6, and when 6 = 2 exp ( - 2 / 7 )  there are an inf ini te  number 

of solutions. 

3. Method of Hnear iza t ion  

By means of the corresponding Green function it is possible to obtain,  

instead of the nonlinear boundary problem (1 .1) ,  (1 .2 ) ,  an equivalent  non- 
l inear  integral  equation,  whose branch point will  also be 6 = 8,. For this 

nonlinear integraI equation,  by means of the method developed in [8], we 

can construct a l inear integral  equation whose e igenvalue  will  be 6 = 6.. 

Reverting from this l inear  integral  equation to the l inear  boundary problem, 

we have 
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A v  + 6e~ = O, (Or / On + ";v)Ir = 0 , (a.  1) Fig.  4. 

where v is the l imi t  of the difference of the two solutions of the nonlinear boundary problem (1.1),  (1 .2)  when 6 "-~ 6 . .  
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Note that the determination of 6 ,  as the eigenvalue of the boundary problem (3.1) is, according to [8], necessary 
but not sufficient. The sufficiency of this condition can be shown easily for simple reaction vessels (plane, cylindrical, 
spherical). 

For a plane reaction vessel, in place of equation (3.1),  we have the equation: 

d2--2v --t - 2"~ v' (dr )1 d x ~ - -  ~ v  =-O,  (0) = 0 ,  ~ "Jr'T v = 0 .  x==1 
(s.2) 

The general solution of Eq. (3.2), according to [6], has the form: 

v = cl th  sx -b e2 (1 - - s x  th  sx) (a.a~ 

By subjecting (3.3)  to boundary conditions (3.2) we obtain an equation that coincides with gq. (2.3). The critical 
solution of the corresponding nonlinear problem is assumed to be known; therefore, knowing @0 and determining the 
root s,  from Eq. (2.3), it is easy to find 5 ,  =2s,  z exp (-~0,). 

For the cylindrical case we have the equation 

d~v t de 8m 
dx --g ~ x- ~x ~ (t -4- mx2) ~ y = 0 . (3.4) 

The general solution of Eq. (3.4) can be found in the form 

I 2 + ( t - - m z 2 )  lnx  1 t--mx'2 (3.5) 
v = cl t + rnz~ ~ C2 t + mz - - - - - ~  

Here and above c ! and c z are arbitrary constants. By making Eq. (3.5) satisfy boundary conditions (3�9 2) we obtain an 
equation for m , ,  by solving which we find m, in the form (2.6).  Since G0, is assumed to be known, 5 ,  = 8 m, . 
�9 exp ( - ~ 0 , ) .  

For a spherical reaction vessel Eq�9 (3.1),  according to [7], has the solution: 

v = cl (~dq) / d~ + 2) (a. 6) 

which satisfies the first of boundary conditions (3�9 2)�9 By subjecting (3�9 6) to the second boundary condition (3�9 2), we 
obtain equation (2�9 Since G0, is known, 5 ,  = 2 s,  2 exp (-00,).  

Note that the sufficiency of determining 5 ,  as the eigenvalue of the boundary problem (3.4), (3 .5)  was previously 
shown in [9] for 7 ~ ,o. 

It follows from the results of w 2 that | (x, y, z) ,'~ 1 when 7 ~ 01 therefore for small values of T in place of 
Eq. (3�9 1) we can write the simpler equation: 

V2u + 8eu = 0 .  (a. 7) 

Thus, for small values of 7 we can determine 5 ,  for any shapes with the aid of the formula 

8 ,  ~ = !~i / e (8. s) 
and assume that the error in calculat ing 5, is smalL" Here g 1 is the first eigenvalue of the boundary problem (3.7),  

(3.1).  Moreover, as examples show [9], at any rate for all the known exact analytic solutions, on the average e @* 
differs little from e = 2�9 718. �9  for at~,y value of 7,  which, according to [10], guarantees fair accuracy in determining 
the eigenvalue of the exact l inearized boundary problem of (3.1) with the aid of the first eigenvalue of the approximate 
linearized boundary problem (3.7) ,  (3�9 1)�9 

Thus, for a plane reaction vessel we have 

1 

K ,  = I e~ ----- 
o 

expOo, th s. [ K I ~  e - -  2.718 for 3' ~ 0~. (3.9)  
s. ~ / ( 1 ~ 2 . 3 t  for 3 ' ~ /  

Correspondingly, for the. case of 

t 

Ks = I 
0 

* Note that formula (~{. 8) was also obtained, from other reasoning, in [11] for ~, = ,r . 

cussion of the accuracy of this formula in this paper�9 

an infinite cylinder 

for 3'--, ~ (8.10) 

However, there is no dis- 
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m ,  = t and K2 = 2.57, 
The general solution of Eq. (8 .7)  has the form 

for a plane react ion vessel; 

for a cyl indr ical  react ion vessel; 

for a spherical react ion v e s s e l .  

K2-->e = 2 . 7 1 8 . . .  

= o~ cos (x V-6ee) -[- c2 s in  (x ~-6e)  

u = c~Jo (x g ~ e )  + c~Vo (x V ~ )  

u = Cl z-1 cos (g V-~e) -~- g2 g-1 sin (x V-6e) 

Here and above, cj  and c a are arbitrary constants, 
of the first and second kind. 
determining 5 ~ , # 

for i"-+0 

(s. ~i) 

(3.12) 

(3.13) 

and J0 and V0 are the corresponding zero-order  Bessel functions 
By making (3. i l ) - (3 .13 ) sa t i s fy  boundary conditions (3 .1) ,  we obtain the equations for 

T = ~ t g  ~ for a plane vessel . (3 .14)  

(3.15) TJo (]/"~-e) = ~ e J 1  ( g ~ )  for a cyl indr ica l  vessel 

y = i - -  ] / ~ e  c tg  ~ - e  for a spherical  vessel (3 .16)  

where J1 is a f irst-order Bessel function of the first kind. The roots of Eqs. (3 .14) - (3 .16)  were found by a t r ia l  method 
and refined by Newton's  method.  

Figures 1 and 3 present plots of 6 , ( ln  T)(curve  1) and 5~ ( In ; / ) (curve  2 ) fo r  a plane and cyl indr ica l  vessel, r e -  
spectively,_ together with the re la t ive  error e of the quantity 5 ~ (curves 3 and 4). Points in Fig. 1 represent the in ter -  
polation formula [5]: 

0.88~ (s. iv) 
6 = b.88e + "r 

For a spherical  vessel with I' 0 .2  we found 5 ~ : , = 0. 212, which is almost ident ica l  with the value of 6 ,  found ca r l -  
o ier0 but for 7 = 0o 4 we have 5~ = 0. 408, for  7 --" ~r 5, = 3.88,  which exceeds the exact  value of 5 ,  obtained in [2] by 

9.3 %. As a s impie interpolat ion formula we can use the expression [5]: 

3.32"; (3 .18)  
6 ,  = e-bl~ 

4. Interpretat ion of the Results 

As follows from the results of w 2, when 5 < 5, several solutions of the nonlinear boundary problem (1. t),  (1. 2), 
exist .  

Let us consider the s tabi l i ty  of the solutions of the boundary problem (1 .1) ,  (1 .2) .  We shall  assume that the solution 
of the s teady-s ta te  problem (1 .1) ,  (1 .2 )  differs ! i t t le  from the solution of the nonsteady-sta te  equation of thermal  ex-  

plosion 

Ot~ t - -  k =A{ } +~ev ( ---C-~ ) (4,1) 

with boundary conditions (I. 2), i~ 

v = @ ~ / ( x ,  y, z, t) (4.2)  

where 8, is the solution of the nonsteady-state  problem; the function f << !; t is the dimensionless t ime ,  and c is-the 

heat  capac i ty  per unit volume.  Substituting (4. 2) in (4. 1) and discarding smal l  terms of the second order, we have for 

the perturbation of f (x, y, z,  t ) t h e  boundary problem 

~ ; -  )J _-0 
We solve problem (4 .3)  by the method of separation of var iables ,  putting 

] (x, y, z, t) = v (x, y, z) exp (--M) (4.4) 

Substituting (4 .4)  in (4 .8) ,  we have 
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It follows from formula (4.4) that if for boundary problem (4.5) k I > O, where )'t is the first eigenvalue, then any 
initial temperature distribution is resolved with time; when k I = 0 this is no longer so. Finally, when X I < 0 there 
is an infinite increase in temperature with t ime. In the latter case the steady-state temperature distribution is unstable, 
i. e . ,  autoignition of the reacting mixture takes place. 

Note that if @ 9 ,  (x, y, z), then boundary problem (4. 5) has a first eigenvalue Xl = 0, since in this case boundary 
problem (4.5) coincides with the boundary problem (3.1) investigated eartier, i . e . ,  when ~ = G, and5 = 5 ,  the l imit-  
ing condition for ignition, X 1 = 0, is satisfied. We shall now show, without making detailed calculations, that solutions 
of boundary problem (1.1),  (1.2),  for which maximum heating is above critical, are unstable, while solutions for which 
maximum heating is below critical are stable. These calculations are given in [6] for y --~ ~o. For small values of 7 the 
function @, (x, y, z) tends to the Semenov temperature distribution | (x, y, z) ~ 1. Then, at least for small values of y,  

the equation 
V u - F ( ~ , + 6 e )  u = O  (4.6) 

can be investigated instead of boundary problem (4.5),  with the same boundary conditions. It follows from the results 
of w 3 that gq. (4. g) can be used for any values of ~, since on the average exp | differs little from e = 2.718 . . . .  

Then the limiting condition for autoignition of the reacting mixture, X t = 0, will be satisfied if 5 is found from 
formula (3.8). 

o For 5 > 5 ,  we haveX t < 0, and any initial temperature distribution will increase with t ime and lead to an explo- 
o sion, but for 5 < 5, this is not so. 

Using (3.8) and developing the expression for ~ given at the beginning of w 1, the condition for thermal explosion 

(3.8)  can be reduced to the form: 

t y p e  E q (4.7) ~Wot, ' 

The ~equals" sign corresponds to the ignition boundary. Further reduction in tp, i . e . ,  an increase in reaction rate 
and heat release, always leads to thermal explosion. The quantity t e is the thermal relaxation t ime during which heating 
decreases e = 2.718 times. 

In the absence of heat release from the reaction, q = 0 and 5 = 0, the boundary problem (4. 6), (4.5) describes the 
cooling of a nonreacting, initially hot body of the same shape and size, and with the same beat capacity and thermal 
conductivity as the reacting system, for the same boundary conditions (4.5).  Then k 1 determines the thermal relaxation 

t ime and 

cL~ (4. 8) 
te = kk---~ " 

A physical interpretation of the condition of autoignition in the form (4. 7) was previously given by one of the au- 
thors [12] for the case of thermal explosion analyzed by N. N. Semenov (7 --~0 ). As may be seen from the analysis 
presented, this relation remains approximately valid for all cases of thermal explosion, whatever the system geometry. 

Q 
It follows from the results of w that 6 ,  is always somewhat greater than the true value 5, .  Thanks to the exponen- 

t im increase in 5 with temperature, this corresponds to a very small overestimate of the critical autoignition tempera-  
ture To, by approximately 1-3"C. 

The result obtained (4. 7) permits a considerable simplification of the problem of finding the critical conditions of 
thermal autoignition for a body of arbitrary shape under mixed cooling conditions (1.2).  

Moreover, in many cases the quantity t e is more simply determined experimentally, by measuring the regular cool-  
ing regime [13] on models of a nonreacting substance with similar geometric and thermal parameters. 
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