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A simple method of determining the conditions for ignition, based on linearization of the resulting nonlinear

equations, is presented. Good agreement is obtained between the exact conditions and the approximate condi-
tions given by the linearization method. A physical interpretation of the new method is offered.

1. Equations of the Steady-State Theory of Thermal Explosion

In the general case, problems of the steady -state theory of thermal explosion [1-2] lead to the solution of the equa-
tion:
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where © is the dimensionless temperature, & is a dimensionless kinetic parameter, X, y, and z are dimensionless co-
ordinates referred to the characteristic linear dimension L of the region D occupied by the reactant, q is the thermal
effect of the reaction per unit volume, E is the activation energy, k is the thermal conductivity, T (x, ¥, z) is the
absolute temperature at an arbitrary point in the region, T is the absolute temperature of the medium surrounding the
reacting syster, R is the universal gas constant, and A is the coefficient of the exponential function in the expression
for the reaction rate:
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Here tp is the time of total combustion for a constant rate and the initial temperature.

At the boundary of the region:
(tre)l=0 (=% 1.9

where y is the Biot number, « is the coefficient of heat transfer from the reacting surface to the surrounding medium,
and n is the normal to the boundary of the region I .

In formulating Eq. (1.1) it was assumed that the relative heating of the reacting system is small (T=Tg)/Tq <1,
and the expansion of exp (~E/RT) was used. For intense heat transfer and large values of the Biot number y = «, con-
dition (1.2) becomes

Olr=0. (1.3)

At small values of the Biot numbery — 0 the temperature at all points of the reacting system is almost the same,
and the given problem is equivalent to the problem of autoignition formulated by N. N. Semenov [3].

At certain values of the parameter & = 8, the boundary problem (1.1), (1.2) ceases to have a real solution. These
values of §, are critical, i.e., values of & for which thermal autoignition is achieved, and the problem of the steady-
state theory of thermal explosion consists in determining these values of § = 6. From the mathematical point of view,
8, are branch points of the boundary problem (1.1), (1.2), since, according to [2, 4] and the results of the next sec-
tion, the two solutions of the problem merge.

2. One-Dimensional Problems of the Steady-State Theory of Thermal Explosion

For the subsequent discussion it is necessary to solve one-dimensional problems of the steady-state theory of thermal
explosion. With the aid of the Frank-Kamenetskii integral for the boundary conditions
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it is easy to find the critical value
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for a plate, where s is the root of the equation

T = (v + 1) s ths, + 5.25¢h?s,. (2.3)
The critical temperature profile is determined from the formula

O, (1) = Oy, — 21Inchs,r 2.9

From formula (2.4) it is easy to find for x = 1 the wall temperature of a plane reaction vessel, and the critical
pre-explosion heating

B = In (25,2/8,). (2.5)

In Fig. 1 the solid line represents the relation between o, and Iny , calculated from formula (2.2), while in Fig. 2
it répresents the relation between @&, and &, (1) and In ¥. It can be seen from Fig. 2 that €, -~ 1, €,(1) » 1 when
y = 0.
The problem of a thermal explosion with boundary conditions of the third
kind has been solved in [5] for the case of an infinite cylinder, The quantity 6+

& I ¢ 9 anbe expressed in the form:
. 8m, ) Ant, 91 T 1 5
6*~—mel\p[—m}, m*-—2T (V1+ /1’]’ 1).
12 24 2.6
4/ The maximum temperature €y, = In (8m,/6,), and the critical tempera-
L 7[—_ ———————— ture profile
26 12675 Az Oy (1) = g — 21In (1 + mya?). 2.7
P
/ 2/;3/ In Fig. 3the solid line 1 represents the relation between o, and Iny, and
/,,/’ Fig. 4 gives the graph of €, and ©,(1) as a function of In y. Hence it can
/,{ g be seen that wheny — 0 both quantities tend to 1.
a4 z 08
// For a spherical vessel we have the equation
Ly O L 2.d8 | g6 .
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w2 g 2 i By means of the substitution
Fig, 1. ' o
E=2V1/,exp6, ¢ =0—6,
we have
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According to [6']. the solution of Eq. (2.8), satisfying the conditions of
symmetry, can be written in the form: Z ]
-==:-./_:...—....‘ ———dhio——L———
I 28—~
; g ~
®=®0——-2S$"2 (&Ezexp (9 (5)] &) dz. (2.10) ~
\0,(/)
0 0 o4
Subjecting Eq. (2.10) to the boundary condition (2.1) for x =1, we 0 \\i}'
have an equation for determining the value of & at which there exists -2 0 2 4
a solution of the boundary problem (1.1), (1.2) in the spherical case: Fig. o.
2 8 8 1 x
—T\x2BXP l¢ ()] dz + 7[60—2\;2— (X E*exp [¢ (§)] dE)d:rJ =0. (2.11)
0 0

Differentiating Eq. (2.11) with respect to @, we have an cquation for determining the value of s = s, at which

the maximum value of § = §, is reached:

S

_9_1*‘(1 —7) S z?exp [@ (z)) dx + v — s, exp [@ (s,)] = 0. (2.12)
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Here and above ¢( &) is the solution of Eq. (2. 9) for the conditions
(p'(O):q>(0)= 0. {2.13)
According to [4], with the change of variables

VP = 2 - Edo/dE, p==Eexplo(§)]. (2.14)

Eq. (2.9) can be reduced to the first-order equation

ap _ 2(—p)—y

5= T v (2.15)

The graph of ¢ =¥ (p) is plotted qualitatively in [4]. An equation of the type (2.18) was integrated numerically by
Emden [7]. The quantities zy and y given in [7] are related to the quantities ¢ and p in the following manners

=—1, zy = In 2p. (2.16)

Substituting (2.14) in (2. 11), after certain transformations we have:

8=2pexp[(p—2)/7], (2.17)

and instead of (2.12) we have the equation

Y(p)=20p—1)/(r—1). (2.18)

Having determined the values of $,_ and p, from Eq. (2.18) as the first
A - 637 point ofintersectionof th¢ curve Wp) and thestraight line ¢y = 2(p — /(¥ — 1),
8 / we find &, from formula (2.17) for any corresponding value of y. It is easy
) "to show that when ¢ (p) is varied the quantity s always increases. Since,
J according to [4], for p = 1 equation (2.15) has a singular point of the focus
4 type, there exist an infinite number of points of intersection of the curve
'—/Z"—""“—“ ¥(p) and thestraight line ¢ = 2(p — 1)/(y — 1) and, consequently, there exist

24
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/ 2, - an infinite number of values of s =s;,, at which an extremum of &= §;, is

16 . ,7// 32 reached, i.e., the curve & = §(s) has an infinite number of maxima and min-

/ ima which decrease in absolute value with increase in s and, asymptotical-

/// ly approach the value § = 2 exp (~2/y) as s— ®, The first maximum & = &34,

attained at the minimum, compared with the rest, value of s = sq,, is the

a8 15  greatest;thenfor§ > &y, there isnoreal solution of the boundary problem(2, 8),
/7 (2.1), and this value & =8y, should be considered critical.

/
%
0 1~ gy Vi For y =0.2 and 0.4 we found &y, = 0.212 and 0.4072, respectively,
-2 0 2 4 with the aid of [7]. By expanding the solution of the boundary problem (2. 8),
(2.1) in powers of £ we found that when y = O the temperature at the wall
of the vessel ©,(1) and @, tend to 1.

Fig. 8.

Note that the first two boundary problems for & < &, have two solutions, one of which has supercritical and the other
subcritical pre;explosion heating; for & = §, these two solutions merge. For 83» < 8 = &, , where &, and &, are two
consecutive maxima of the curve § (s), boundary problem (2.8), (2.1) also has two solutions, which merge when & =8y,
Different numbers of solutions are possible for other values of &, and when § =2 exp (—2/Y) there are an infinite number
of solutions,

14
3. Method of Linearization ’ O ,
13852
By means of the corresponding Green function it is possible to obtain, 12 ]

instead of the nonlinear boundary problem (1.1), (1.2), an equivalent non- _..\"5——-1-\“1-—————--—-—--——-1
linear integral equation, whose branch point will also be 6 = §,. For this 04 ~
nonlinear integral equation, by means of the method developed in [8], we \8*(1)
can construct a linear integral equation whose eigenvalue will be 6= 9,. 04 \ .
Reverting from this linear integral equation to the linear boundary problem, [\\Y\LW\ .
we have -7 - 0 7 FE

AT 4 8802y = 0, (0v/on+yo)|r=0, (3.1) Fig. 4.

where v is the limit of the difference of the two solutions of the nonlinear boundary problem (1, 1), (1, 2) when & —> 6.
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- Note that the determination of 8, as the eigenvalue of the boundary problem (3.1) is, according to [8], necessary
but not sufficient.. The sufficiency of this condition can be shown easily for simple reaction vessels (plane, cylindrical,
spherical).

For a plane reaction vessel, in place of equation (3.1), we have the equation:

dv

=0, vO=0, (& +m)

3.2
dz? + ch2 st 0. -2

=

The general solution of Eq. (8.2), according to [6], has the form:
v = ¢1 th sz 4 ¢, (1 — sz th sz) (3.3)

By subjecting (3. 3) to boundary conditions (3. 2) we obtain an equation that coincides with Eq. (2.3). The critical
solution of the corresponding nonlinear problem is assumed to be known; therefore, knowing @, and determining the
root s, from Eq. (2.3), it is easy to find &, =252 exp (~8y,).

For the cylindrical case we have the equation

d% 1 dv
@ T oot ey (1 ma?)? + mm2)2 =0. (8.4)

The general solution of Eq. (3.4) can be found in the form

_ 24+ (1—maz)Inx 1 — ma? 3.5
v__cl[ 1+ ma? ]+21—§—mz2 3.5)

Here and above c; and c, are arbitrary constants. By making Eq. (3. 5) satisfy boundary conditions (3.2) we obtain an
equation for m, , by solving which we find m, in the form (2.6). Since @, is assumed to be known, &, = 8 m,

+ €xp ("@Om)-

For a spherical reaction vessel Eq. (3.1), according to [7], has the solution:
v = c; (Edp [ dE + 2) (3.6)

which satisfies the first of boundary conditions (3.2). By subjecting (3. 6) to the second boundary condition (3.2), we
obtain equation (2.12). Since &, is known, &, = 2 s,l,2 exp (—By).
Note that the sufficiency of determining &, as the eigenvalue of the boundary problem (3.4), (3.5) was previously
shown in [9] for y — =,
1t follows from the results of §2 that @, (x, y, z) ~1 wheny ~ 0; therefore for small values of y in place of
Eq. (3.1) we can write the simpler equation:
_ Viu 4 deu =0 . 3.7
Thus, for small values of y we can deterrnine 8, for any shapes with the aid of the formula
8" =t /e (3.8)
and assume that the error in calculating §, is small,” Here p, is the first eigenvalue of the boundary problem (3.7),

(3.1). Moreover, as examples show [9], at any rate for all the known exact analytic solutions, on the average eOs
differs little from e =2.718... for any value of y, which, according to [10], guarantees fair accuracy in determining
the eigenvalue of the exact linearized boundary problem of (3.1) with the aid of the first eigenvalue of the approximate

linéarized boundary problem (3.7), (3.1).

Thus, for a plane reaction vessel we have

1
=\ Oudy — EXPBusth sy (K1—>6-2718 for -0
& ‘Se == Koo 230 0 1o o0)” (3.9)
0

Correspondingly, for the, case of an infinite cylinder

1

X oxp 6 1 arc tg V m, ,
K, = \ Oudy = p2 On (“1 T + Vgrﬁ‘{ "‘) for 17— o (3.10)
0

* Note that formula (8, 8) was also obtained, from other reasoning, in [11] for y = « . However, there is no dis-
cussion of the accuracy of this formula in this paper.
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m*:l and K2:257, KQ-——>6——“2.7'18..._ for y—0 .

The general solution of Eq. (3. 7) has the form

u=c¢;c08{z Vge.) -+ ¢y sin (z Vgé) (3.11)
for a plane reaction vessel;
u=cJ,(x V) + eV, (z V8e) (3.12)
for a cylindrical reaction vessel;
u=c;zL cos (z V' 8e) + er sin (z V 8e) (3.13)

for a spherical reaction vessel.

Here and above, c; and c, are arbitrary constants, and J, and V, are the corresponding zero-order Bessel functions
of the first and second kind. By making (3.11)-(3. 13)satisfy boundary conditions (3.1), we obtain the equations for
determining & :

v =} detg Ve fora plane vessel (8.14)
vJo (V&) =V e (V 8e) for a cylindrical vessel (3.15)
v=1— l@ctg V 8e  for a spherical vessel (3.18)

where Jy is a first-order Bessel function of the first kind. The roots of Eqs. (8.14)-(3.16) were found by a trial method
and refinec by Newton 's method,

Figures 1 and 3 present plots of & (Iny){curve 1} and & (Iny){curve 2) for a plane and cylindrical vessel, re-
spectively, together with the relative error & of the quantity &, (curves 3 and 4). Points in Fig, 1represent the inter-
polation formula [5]¢

o 0881

T 0.88¢ + 7 (3.17)

For a spherical vessel withy = 0.2 we found & = 0. 212, which is almost identical with the value of &, found eari-
fer, but fory = 0.4 we have & = 0. 408, fory — w, & = 3.63, which exceedsthe exact value of §, obtained in [2] by
9.3 %. As a simple interpolation formula we can use the expression [5]:

3.3y
0= ory

{3.18)

4, Interpretation of the Results

As foltows from the resuits of § 2, when § < &, several solutions of the nonlinear boundary problem (1, 1), (1. 2),
exist.

Let us consider the stability of the solutions of the boundary problem (1.1), (1.2). We shall assume that the solution
of the steady-state problem (1.1}, (1.2} differs little from the solution of the nonsteady-state equation of thermal ex-

plosion

4y k
Co=Ab O [(i=-f) (4. 1)

with boundary conditions (1.2), i.e.,
T/$@+f(flf, yizut) (4‘2)

where & is the solution of the nonsteady-state problem; the function f « 13 t is the dimensionless time, and ¢ is-the
heat capacity per unit volume. Substituting (4.2)in (4.1) and discarding small terms of the second order, we have for

the perturbation of f (X, ¥, z, t) the boundary problem

: (0
G=nprocs, (2L +vr)=0 . (4.3)

We solve problem (4. 3) by the method of separation of variables, putting
iz, y, 2,8 =1v(z,y,2) exp{—il) . (4.4)
Substituting (4.4) in (4.3}, we have
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LY+ (b 4 8ef) v =0, (z—f;+ T'v)lr= 0. (4.5)

It follows from formula (4. 4) that if for boundary problem (4.5) \; > 0, where X is the first eigenvalue, then any
initial temperature distribution is resolved with time; when Ay = 0 this is no longer so. Finally, when &y < 0 there
is an infinite increase in temperature with time. 1n the latter case the steady-state temperature distribution is unstable,

i.e., autoignition of the reacting mixture takes place.

Note that if ® = 8, (X, y, z), thenboundary problem (4. 5) has a first eigenvalue A = 0, since in this case boundary
problem (4. 5) coincides with the boundary problem (3. 1) investigated earlier, i.e., when 9 = By and 6 =6 , the limit-
ing condition for ignition, Ay =0, is satisfied. We shall now show, without making detailed calculations, that solutions
of boundary problem (1, 1), (1.2), for which maximum heating is above critical, are unstable, while solutions for which
maximum heating is below critical are stable. These calculations are given in [6] fory = . For small values of y the
function @, (%,y,2) tends to the Semenov temperature distribution @, (x,y,z) ~ 1. Then, at least for small values of y,

the equation
vVuA (h+08e)u=0 (4. 6)

can be investigated instead of boundary problem (4.5), with the same boundary conditions. It follows from the results
of §3 that Eq. (4.6)can be used for any values of y, since on the average exp ©, differs little frome =2.718,...

Then the limiting condition for autoignition of the reacting mixture, Ay =0, will be satisfied if & is found from
formula (3. 8).

For § > &, we have); < 0, and any initial temperature distribution will increase with time and lead to an explo-
sion, but for & < &, this is not so.

Using (3. 8) and developing the expression for & given at the beginning of §1, the condition for thermal explosion

(3. 8) can be reduced to the form:

E

o 7 4.7)
to S € o, o e

The "equals” sign corresponds to the ignition boundary. Further-reduction in ty, i.e., an increase in reaction rate
and heat release, always leads to thermal explosion. The quantity t, is the thermal relaxation time during which heating
decreases e = 2, 718 times.

In the absence of heat release from the reaction, q =0 and & =0, the boundary problem (4. 6), (4.5) describes the

cooling of a nonreacting, initially hot body of the same shape and size, and with the same heat capacity and thermal
conductivity as the reacting system, for the same boundary conditions (4.5). Then Ay determines the thermal relaxation

time and

cl?
le= e (4.8)

A physical interpretation of the condition of autoignition in the form (4.7) was previcusly given by one of the au-
thors [12] for the case of thermal explosion analyzed by N. N. Semenov {(y =0 ). As may be seen from the analysis
presented, this relation remains approximately valid for all cases of thermal explosion, whatever the system geometry.

It follows from the results of §3 that &, is always somewhat greater than the true value 8. Thanks to the exponen-
tial increase in & with temperature, this corresponds to a very small overestimate of the critical autoignition tempera-
ture Ty, by approximately 1-3°C.

The result obtained (4,7) permits a considerable simplification of the problem of finding the critical conditions of
thermal autcignition for a body of arbitrary shape under mixed cooling conditions (1. 2).

Moreover, in many cases the quantity t, is more simply determined experimentally, by measuring the regular cool-
ing regime [13] on models of a nonreacting substance with similar geometric and thermal parameters.
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